The functions se_fre, re_fre, hce_fre, and ae_fre provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Fréchet distribution distribution and \(\delta\).
Arguments
alpha
The parameter of the Fréchet distribution (\(\alpha>0\)).
beta
The parameter of the Fréchet distribution (\(\beta\in\left(-\infty,+\infty\right)\)).
zeta
The parameter of the Fréchet distribution (\(\zeta>0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the Fréchet distribution:
$$
f(x)=\frac{\alpha}{\zeta}\left(\frac{x-\beta}{\zeta}\right)^{-1-\alpha}e^{-(\frac{x-\beta}{\zeta})^{-\alpha},}
$$
where \(x>\beta\), \(\alpha>0\), \(\zeta>0\) and \(\beta\in\left(-\infty,+\infty\right)\). The Fréchet distribution is also known as inverse Weibull distribution and special case of the generalized extreme value distribution.
References
Abbas, K., & Tang, Y. (2015). Analysis of Fréchet distribution using reference priors. Communications in Statistics-Theory and Methods, 44(14), 2945-2956.